Code: EE4T1

# II B.Tech - II Semester - Regular / Supplementary Examinations October - 2020 

## COMPLEX VARIABLES \& SPECIAL FUNCTIONS (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) Define analytic function at a point.
b) Find value of $b$ such that $u=e^{b x} \cos 3 y$ is harmonic.
c) Determine the principle value of $\log (-i)$.
d) Evaluate $\int_{C} f(z) d z$ where $f(z)=\frac{z+2}{z}$ and C is the semi circle $z=2 e^{i \theta}, 0 \leq \theta \leq \pi$.
e) Find $\int_{0}\left(x^{2}-i y\right) d z$ along the path of $y=x$.
f) Classify the singularity for the function $f(z)=e^{\frac{1}{z}}$
g) Find the residue of $\frac{z e^{2}}{(z-1)^{3}}$ at $\mathrm{z}=1$.
h) Find the image of $|z|=2$ under the transformation $w=3 z$.
i) Calculate the fixed points of the of the transformation

$$
w=\frac{6 z-9}{z} .
$$

j) Prove that $P_{2}(x)=\frac{3 x^{2}-1}{2}$.
k) Find $\mathrm{J}_{0}(2)$.
PART - B

Answer any $\boldsymbol{T H R E E}$ questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Determine the value of p such that the function
$f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \tan ^{-1}\left(\frac{p x}{y}\right)$ is an analytic function. $\quad 8 \mathrm{M}$
b) If $w=\phi+i \psi$ represents the complex potential function for an electric field and $\psi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$ and determine the function $\phi$.

8 M
3. a)Using Cauchy's integral formula, evaluate $\int_{c} \frac{z-3}{z^{2}+2 z+5} d z$ where C is the circle $|z+1+i|=1$.

8 M
b) Expand $f(z)=\frac{1}{(z-1)(z-2)}$ in the region (i) $1<|z|<2$ (ii) $|z|>2$ as Laurent's series. 8 M
4. a) Using Residue theorem, evaluate $\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z$ where C is $|z|=3$.
b)Use the method of contour integration and prove that

$$
\int_{0}^{2 \pi} \frac{1}{1+a^{2}-2 a \cos \theta} d \theta=\frac{2 \pi}{1-a^{2}}, 0<a<1
$$

5. a) Show that the function $w=\frac{4}{z}$ transforms the straight line $x=c$ in the z-plane into a circle in the w-plane. 8 M
b)Find the bilinear transformation which maps the points $z=1, i,-1$ into the points $w=0,1, \infty$.
6. a)Show that $x J_{n}^{\prime}(x)=n J_{n}(x)-x J_{n+1}(x)$

8 M
b) Prove that $P_{n}(-x)=(-1)^{n} P_{n}(x)$ and hence deduce that $P_{n}(-1)=(-1)^{n}$.

8 M

